3.509 \(\int \sec ^4(c+d x) (a+b \tan (c+d x)) \, dx\)

Optimal. Leaf size=44 \[ \frac {a \tan ^3(c+d x)}{3 d}+\frac {a \tan (c+d x)}{d}+\frac {b \sec ^4(c+d x)}{4 d} \]

[Out]

1/4*b*sec(d*x+c)^4/d+a*tan(d*x+c)/d+1/3*a*tan(d*x+c)^3/d

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 44, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {3486, 3767} \[ \frac {a \tan ^3(c+d x)}{3 d}+\frac {a \tan (c+d x)}{d}+\frac {b \sec ^4(c+d x)}{4 d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^4*(a + b*Tan[c + d*x]),x]

[Out]

(b*Sec[c + d*x]^4)/(4*d) + (a*Tan[c + d*x])/d + (a*Tan[c + d*x]^3)/(3*d)

Rule 3486

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*(d*Sec[
e + f*x])^m)/(f*m), x] + Dist[a, Int[(d*Sec[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e, f, m}, x] && (IntegerQ[2
*m] || NeQ[a^2 + b^2, 0])

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rubi steps

\begin {align*} \int \sec ^4(c+d x) (a+b \tan (c+d x)) \, dx &=\frac {b \sec ^4(c+d x)}{4 d}+a \int \sec ^4(c+d x) \, dx\\ &=\frac {b \sec ^4(c+d x)}{4 d}-\frac {a \operatorname {Subst}\left (\int \left (1+x^2\right ) \, dx,x,-\tan (c+d x)\right )}{d}\\ &=\frac {b \sec ^4(c+d x)}{4 d}+\frac {a \tan (c+d x)}{d}+\frac {a \tan ^3(c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.09, size = 41, normalized size = 0.93 \[ \frac {a \left (\frac {1}{3} \tan ^3(c+d x)+\tan (c+d x)\right )}{d}+\frac {b \sec ^4(c+d x)}{4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^4*(a + b*Tan[c + d*x]),x]

[Out]

(b*Sec[c + d*x]^4)/(4*d) + (a*(Tan[c + d*x] + Tan[c + d*x]^3/3))/d

________________________________________________________________________________________

fricas [A]  time = 0.70, size = 45, normalized size = 1.02 \[ \frac {4 \, {\left (2 \, a \cos \left (d x + c\right )^{3} + a \cos \left (d x + c\right )\right )} \sin \left (d x + c\right ) + 3 \, b}{12 \, d \cos \left (d x + c\right )^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4*(a+b*tan(d*x+c)),x, algorithm="fricas")

[Out]

1/12*(4*(2*a*cos(d*x + c)^3 + a*cos(d*x + c))*sin(d*x + c) + 3*b)/(d*cos(d*x + c)^4)

________________________________________________________________________________________

giac [A]  time = 0.60, size = 48, normalized size = 1.09 \[ \frac {3 \, b \tan \left (d x + c\right )^{4} + 4 \, a \tan \left (d x + c\right )^{3} + 6 \, b \tan \left (d x + c\right )^{2} + 12 \, a \tan \left (d x + c\right )}{12 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4*(a+b*tan(d*x+c)),x, algorithm="giac")

[Out]

1/12*(3*b*tan(d*x + c)^4 + 4*a*tan(d*x + c)^3 + 6*b*tan(d*x + c)^2 + 12*a*tan(d*x + c))/d

________________________________________________________________________________________

maple [A]  time = 0.36, size = 38, normalized size = 0.86 \[ \frac {-a \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )+\frac {b}{4 \cos \left (d x +c \right )^{4}}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^4*(a+b*tan(d*x+c)),x)

[Out]

1/d*(-a*(-2/3-1/3*sec(d*x+c)^2)*tan(d*x+c)+1/4*b/cos(d*x+c)^4)

________________________________________________________________________________________

maxima [A]  time = 0.33, size = 48, normalized size = 1.09 \[ \frac {3 \, b \tan \left (d x + c\right )^{4} + 4 \, a \tan \left (d x + c\right )^{3} + 6 \, b \tan \left (d x + c\right )^{2} + 12 \, a \tan \left (d x + c\right )}{12 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4*(a+b*tan(d*x+c)),x, algorithm="maxima")

[Out]

1/12*(3*b*tan(d*x + c)^4 + 4*a*tan(d*x + c)^3 + 6*b*tan(d*x + c)^2 + 12*a*tan(d*x + c))/d

________________________________________________________________________________________

mupad [B]  time = 3.59, size = 46, normalized size = 1.05 \[ \frac {\frac {b\,{\mathrm {tan}\left (c+d\,x\right )}^4}{4}+\frac {a\,{\mathrm {tan}\left (c+d\,x\right )}^3}{3}+\frac {b\,{\mathrm {tan}\left (c+d\,x\right )}^2}{2}+a\,\mathrm {tan}\left (c+d\,x\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*tan(c + d*x))/cos(c + d*x)^4,x)

[Out]

(a*tan(c + d*x) + (a*tan(c + d*x)^3)/3 + (b*tan(c + d*x)^2)/2 + (b*tan(c + d*x)^4)/4)/d

________________________________________________________________________________________

sympy [A]  time = 3.11, size = 44, normalized size = 1.00 \[ \begin {cases} \frac {a \left (\frac {\tan ^{3}{\left (c + d x \right )}}{3} + \tan {\left (c + d x \right )}\right ) + \frac {b \sec ^{4}{\left (c + d x \right )}}{4}}{d} & \text {for}\: d \neq 0 \\x \left (a + b \tan {\relax (c )}\right ) \sec ^{4}{\relax (c )} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**4*(a+b*tan(d*x+c)),x)

[Out]

Piecewise(((a*(tan(c + d*x)**3/3 + tan(c + d*x)) + b*sec(c + d*x)**4/4)/d, Ne(d, 0)), (x*(a + b*tan(c))*sec(c)
**4, True))

________________________________________________________________________________________